Pedestrian Detection with Semantic Regions of Interest
نویسندگان
چکیده
For many pedestrian detectors, background vs. foreground errors heavily influence the detection quality. Our main contribution is to design semantic regions of interest that extract the foreground target roughly to reduce the background vs. foreground errors of detectors. First, we generate a pedestrian heat map from the input image with a full convolutional neural network trained on the Caltech Pedestrian Dataset. Next, semantic regions of interest are extracted from the heat map by morphological image processing. Finally, the semantic regions of interest divide the whole image into foreground and background to assist the decision-making of detectors. We test our approach on the Caltech Pedestrian Detection Benchmark. With the help of our semantic regions of interest, the effects of the detectors have varying degrees of improvement. The best one exceeds the state-of-the-art.
منابع مشابه
Fusing LIDAR, camera and semantic information: A context-based approach for pedestrian detection
In this work, a context-based multisensor system, applied for pedestrian detection in urban environment, is presented. The proposed system comprises three main processing modules: (i) a LIDAR-based module acting as primary object detection, (ii) a module which supplies the system with contextual information obtained from a semantic map of the roads, and (iii) an image-based detection module, us...
متن کاملPedestrian Detection in Far-Infrared Daytime Images Using a Hierarchical Codebook of SURF
One of the main challenges in intelligent vehicles concerns pedestrian detection for driving assistance. Recent experiments have showed that state-of-the-art descriptors provide better performances on the far-infrared (FIR) spectrum than on the visible one, even in daytime conditions, for pedestrian classification. In this paper, we propose a pedestrian detector with on-board FIR camera. Our ma...
متن کاملSemantic fusion of laser and vision in pedestrian detection
Fusion of laser and vision in object detection has been accomplished by two main approaches: (1) independent integration of sensor-driven features or sensor-driven classifiers, or (2) a region of interest (ROI) is found by laser segmentation and an image classifier is used to name the projected ROI. Here, we propose a novel fusion approach based on semantic information, and embodied on many lev...
متن کاملIn-vehicle Pedestrian Detection Using Stereo Vision Technology
In the last 3 decades, between 4378 (in 2008) and 8090 (in 1979) pedestrians were killed each year in motor vehicle related crashes, representing 11% to 17% of the total roadway fatalities. Although the numbers of pedestrian deaths have been in decline steadily since 1980, their distributions have become more and more concentrated in urban areas. There is an urgent need to develop reliable pede...
متن کاملPedestrian detection on CAVIAR dataset using a movement feature space
This work develops a pedestrian detection system using a feature space based on level lines, called Movement Feature Space (MFS). Besides detecting the movement in the scene, this feature space defines the descriptors used by the classifiers to identify pedestrians. Locations hypotheses of pedestrian are performed by a cascade of boosted classifiers. The validation of these regions of interest ...
متن کامل